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Abstract. In bond or site percolation models for ‘myopic ants’ the jumps of a random 
walker are biased to attempt only open passages, whereas an unbiased walker (‘blind ant’) 
tries open and blocked ones equally. The present paper generalises these concepts to 
impurity problems. One parameter describes the conductivity of the impurity. which may 
be higher or lower than that of the host sites or bonds. Another parameter describes a 
weak or strong bias to move away or stay close to impurities. This provides a more general 
description for, e.g., flow in porous media, oil in sands or gas in rocks. The models are 
analysed to first order in the concentration of impurities. Results are presented for the 
static diffusion coefficient and the velocity autocorrelation function. It  is found that the 
bias parameter mainly enters the short- and intermediate-time regime. 

1. Introduction 

In standard percolation problems [1,2] an unbiased random walker (‘blind ant’) at- 
tempts to jump at times t = 1,2,3, ... to any of its nearest-neighbour (NN) sites with 
equal probability, say a for a square lattice. If the attempted bond or site is excluded 
or blocked (‘contains an impurity’), the random walker (RW) remains on its original 
site and makes a new attempt on the next time step. With this stochastic dynamics the 
blind ant will spend a substantial amount of time in regions with a high concentration 
of impurities, without exploring neighbouring regions. 

To stimulate i t  to move away from these high concentration regions, one may bias 
the RW (‘myopic ant’) to attempt only a NN jump to any of the I open or not-excluded 
sites or bonds ( I  = 1,2,3,4) with probability 1/1. If the site is completely surrounded 
by impurities the RW cannot move. This biased RW will always jump and the total 
probability for leaving a site, not totally surrounded, is uniform over the whole lattice, 
independent of the local surroundings. Such systems have been investigated in great 
detail near the percolation threshold [3] and also at low impurity concentration [412].  

These models have also been generalised to random resistor networks and all types 
of RW on disordered lattices in bond and site versions [2,8-113. This can be done 
by replacing a fraction c of sites or bonds in the host lattice by impurities with non- 
vanishing hopping rates, y = 1 - b, which may be larger (6 < 0) or smaller (0 < b < 1) 
than those in the host lattice. 

At low concentrations such models of unbiased RW have been investigated in 
great detail. Both for bond randomness [ 4 7 ]  and for site randomness [S-111 an 
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expansion up to Cf (c') was performed. Computer simulations by Frenkel for the site 
and bond percolation model [13] and by Breij er al [14] for bond percolation at low 
concentrations of disorder gave good agreement both for the diffusion coefficient and 
for the time dependence of the velocity autocorrelation function (VACF). Simulations of 
the diffusion coefficient in site and bond problems [IS] were found to be well described 
by the low concentration expansion up to Cc(c2) for concentrations not too close to the 
percolation threshold L4.81. 

In the present paper we generalise the above classes of models such that the RW 
is strongly or weakly biased to look for the easier passages, or-on the contrary-to 
have a bias to remain close to impurity sites. The purpose of the present paper is 
to calculate analytically the frequency dependent diffusion coefficient and the VACF of 
such biased RW at low concentration of impurities, and to investigate to what extent 
this bias affects the transport coefficients and the long-time behaviour of the VACF. 
This will be done for both bond and site problems. 

In  a series of papers [ 4 1  1 3  a systematic theory was developed for calculating 
the above properties for the unbiased RW up to C(c*) in the impurity concentration. 
Here that method is extended to biased RW on lattices with a low concentration c of 
randomly placed impurities. For the bond problem the response function is calculated 
in section 2, the density expansion to C(c) is treated in section 3, and diffusion and 
VACF are treated in section 4, where also the results are discussed. The same is done 
for the site problem in sections 5 and 6. The last section contains a discussion of the 
results. 

2. Master equation-bond problem 

We shall consider independent particles or random walkers (RW) making nearest- 
neighbour ( N N )  jumps on a hypercubic lattice in d dimensions. A small fraction c 
of the bonds, taken at random, is replaced by impurities. The hopping rates across 
impurity bonds differ from those across host lattice bonds. 

For a fixed configuration of impurities the probability distribution of the RW to be 
at site n at time t of the lattice can be described by the master equation 

Greek indices 2, p. ... (= 1,2, ... d )  label Cartesian components of d-vectors and tensors, 
and e7 is a set of d unit  vectors pointing along the positive x axis. 

To specify the configuration of impurities we assign to each bond (n ,n  + e , )  a 
random variable e:, with values 

with probability e 
with probability 1 - c 

c; = 

to indicate that the bond is an impurity bond or a host lattice bond respectively. The 
random variables I& and w,"-,, indicate the hopping rates across the bonds (n, n + e,)  
and ( n  - e, ,  n )  respectively. We choose units of time such that ip," = 1 for a host lattice 
bond and I+>: = 1 - b for an impurity bond: 



Biased random walks on lattices with diluted disorder 5233 

with b < 0 or 0 < b I 1 for impurities that respectively have a ‘higher conductivity’ or 
‘lower conductivity’ than the host lattice bonds. The value b = 1 refers to blocked bonds 
(‘insulating impurities’) or to the bond percolation problem. The random variable x, 
in (2.1) is defined as 

where z,, is the fraction of nearest-neighbour bonds of site n, that contain impurities 
(z,, = I / 2 d ; l  = 0,1,2, ..., 2d) .  The basic idea of the ‘myopic ant models’ is that the 
random walker can optimise its jump trials by inspecting its nearest-neighbour bonds 
and give a positice bias to easy passages (bonds with higher jump rates). By setting 
a = 0 in (2.4), one has the standard model of the unbiased random walker (‘blind ant’). 
Consider the total rate for leaving site n :  

Consider first the case of low conductivity impurities (0 < b I 1) (with jump rates 
smaller than those in the host). To have a physically meaningful model, one should 
observe that the total rate out of a site cannot be increased by replacing high- 
conductivity bonds by low-conductivity bonds; consequently 0 I a I b I 1. In the 
case of high-conductivity impurities (b  < 0) one can repeat the above argument with 
both types of bonds interchanged; consequently la/ I lbl. In case a = b the total rate 
in (2.5) is unity, irrespective of the presence of impurities. The bond percolation model 
a = b = 1 is known in the literature as the ‘myopic ant’ model. It is mainly studied 
near the percolation threshold. 

Instead of a positice bias for hopping away from regions of high concentration 
of low-conductivity impurities (myopic ants) one may also consider models with a 
negatice bias, i.e. the RW is biased to be at sites adjacent to low conductivity impurities, 
corresponding to a < 0 for b > 0 or a > 0 for b < 0. In summary: the model 
parameters are limited to 

In the following we need the stationary solution p:  of the master equation. given by 

- 1  

p:  = constant x x,, = x,, (C x n , )  . 

For large systems with N sites this becomes 

(2.7) 

We consider an ensemble of RW and take (2.6) as the probability that any of them 
starts at t = 0 at site n. To calculate the moments of displacement we study the 
joint probability p ( n t ; m )  = P , , ( t ) p ~  that the RW be at m at t = 0 and at  n at t .  The 
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conditional probability P,,(t) with P,l,fl(0) = a,,, also satisfies the master equation (2.1), 
which in matrix form is 

P ( t )  = - L X - ' P ( t )  (2.8) 

with 

or explicitly 

(2.10) 

The matrix (S,),,,, = dm,,!+e7 represents a translation over the lattice vector e,. Further- 
more, we will be using the diagonal matrices A = { X ,  "', C') with A,, = unJnm. 

Next we introduce the response function as the generating function of the average 
moments of displacement 

(2.11) 

where we used the formal solution (2.1) and the stationary distribution (2.7) in matrix 
notation. The angle brackets (. .) denote an average over the quenched disorder (2.2). 
I t  depends only on (n-m) because of translational invariance. It is therefore convenient 
to write (2.1 1) in Fourier representation 

F ( q , z )  = - x- 
(x) Y zx + L 4 yy  

where Aqq, denotes the Fourier representation of the matrix A, 

(2.12) 

(2.13) 

For later calculations it is convenient to write the response function as 

1 1 -bc o(q) 1 1 
F ( q , z )  = - - (2.14) - - 

44 
z z? + 

The first term is the only one which survives at q = 0 and expresses particle number 
conservation (E,, p , ( t )  = 1). The second term 

. d  
I 

w ( q )  = 1 - - 
d cos 4' (2.15) 

'= I 

is the structure factor of the pure lattice and ( y )w(q )  = (1 - bc)w(q) = ( L ) 4 y  is the 
Fourier transform of the average of (2.8). The calculation of (2.10) up to O(c) will be 
reported in the next section. 
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3. Density expansion bond problem 

The purpose of this section is to expand (2.12) up to linear order in the concentration 
c of impurities. We first outline the general procedure. To that purpose the matrices in 
(2.12) are split into a part referring to the impurity free lattice (all c i  = 0) and a part 
linear in the fluctuating density c i  of impurities 

L = L O - V  zx + L = z + LO - w. (3.1) 

Then the average in (2.12) is expanded into a formal power series in ( V W ' . . . )  . In 
the multiple sums over products c;cif,ci. . . . we retain only those terms that contain one 
single impurity bond, using the relation ( (c;) ' )  = (e;)  = e. All terms involving different 
impurities are at least of f ( c 2 ) .  In this procedure we take into account all the walks 
that repeatedly visit a single impurity. 

To carry out this programme we use the Fourier representation, where L&, = 
w(q)6,,, on account of (3.1), (2.10) and (2.13) and 

x I 

where Cj,. is the Fourier transform (2.13) of the matrix C;,n = ~:d,,, ,~. Here ~ : ( q )  is the 
Hermitian adjoint of the 2-vector with components c , , , ( q )  ( i  = 1 ,2 ) :  

(3.3) 

and v and w are 2 x 2 matrices. 

We denote the propagator of the host lattice by 

and write the aierage in (2.1 1 )  as 
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We expand these terms in powers of Ctq8 and keep only terms involving powers of c; 
referring to a single impurity bond. For example 

Here ((c:)/) = (c:) 5 c and the product of exponents exp(iq'n) cancel. For large lattices 
(N + x )  the q-sums over the first Brillouin zone (1BZ) can be replaced by integrals, 
and we use the convention 

We define the 2 x 2 matrix G with elements 

It  has the form 

with components 

cos q I  - ( 1  + z ) L ( z )  - 1 
L(2) y 2  = J1GT-Z- Y I = J J -  

1 

(3.9) 

(3.10) 

independent of r because of the cubic symmetry. With the help of this notation (3.7) 
reduces to: 

In the same way the remaining terms of (3.6) can be evaluated as 
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The matrices v, w and G have the general form (3.9) and therefore commute. Collecting 
terms yields 

Next the propagator is evaluated: 

where r l  and r2 satisfy 

r l  + r2 = 1 - ( b  + i z a ) ~ ( z )  r l  - r2 = 1 - i z a  ~ ( z ) .  

The functions J ( z )  and K ( z )  follow from (3.10) as 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

and are independent of a and b. We may write the matrix (1 - wG)-'. . . in (3.1 1) as 

Collecting terms results in 

(3.15) 

where g(q,z) = l / ( z  +w(q) ) .  By performing the sum over 2 in (3.1 l), we finally obtain 
for the response function 

We note that the q dependence only enters through o(q). Taylor expansion of (3.16) in 
powers of q yields the moments of displacement and transport properties on account 
of (2.1 1). They will be calculated in the next section. 
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4. VACF and the diffusion bond problem 

The diffusion coefficient and velocity autocorrelation function (VACF) can be defined 
most conveniently in terms of the moments of displacement. They are generated by 
the 4 expansion of the response function (2.1 I )  as 

where 1, p, ;, b label Cartesian components and where (. . . ) ( z )  denotes the Laplace 
transform of the moments of displacement: 

1i.m 

The average ( . . . )  is over the quenched disorder (2.2). The second moment is pro- 
portional to c?,,~ because of the cubic symmetry. Its long time behaviour defines the 
diffusion coefficient ( (bn , ) ' ) ,  - 2Dt ( t  -+ r,) and its second derivative the VACF 

Its Laplace transform is 

@ ( z )  = Sz'((An,)')(z). 

Since (4.1) can be written as 

F ( 4 , z )  = 2 5 '  - ( 4 / z ) 2 @ ( 4  + . . . 
we deduce from (3.14) that the Laplace transform of the VACF is 

cb2 J ( z )  
1 - (b  + i z a ) J ( z )  

The diffusion coefficient follows by setting z = 0: 

D = @ ( O ) = -  ' [ I + c  ( a - -  ,"",) + P(e ' ) ]  
2d 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

The VACF can be obtained by Laplace inversion of (4.5). As follows from the large-z 
behaviour of (4.3) and (2.12), the VACF contains a term proportional to a Dirac delta 
function 6 + ( t )  with normalisation j8 dtb+(t) = 1. Hence 

q( t )  = D,d+(t )  + cp+(t) + C(c') (4.7) 

where DE = (1/2d)(l - bc)/( l  - ac) is the Enskog or short-time diffusion coefficient, 
and q+(t) is negative for all t > 0 and linear in c. 

In two dimensions J ( z )  is known analytically through (3.14) and (3.10) [5 ] ,  yielding 

L ( z )  = (1 +2)- ' (2n)K((l  +z) -? )  
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I , ,  , i . i l l i l i L . ' . 2  

0 0 5  1 0  1 5  20 2 5  3 0  3 5  4 0  
Collision times T 

I 
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4 . 0  

Collision times T 

Figure 1. VACF for myopic ants. ( a )  The model with excluded bonds and a = b = 1. (b)  The 
model with impurity bonds of low conductivity and a = b = 0.5. In both cases the broken 
curve represents the short-time expansion to order t 3  and the insets display the situation 
for large time, the broken curve being given by equation (4.9). 

where K ( m )  is the complete elliptic integral of the first kind [16]. Numerical inversion 
of the Laplace transform (4.5) yields the VACF. However, from the leading small-z 
singularity of K(z) and J ( z )  one can determine the long time behaviour of the VACF 
analytically. This yields [5] 

~ ( z )  = t [ t  + ( z / ~ x ) ( I  - i z )  ln(z/8) + . . .I. (4.8) 

With the help of Tauberian theorems, derived in [6],  one finds for the long-time tail 

with 

4 2b 
1 

T I  (4.10) 

where 7 is Euler's constant. 
To obtain the long-time tail for general dimensionality (d  > 2), we determine the 

small-z singularities of J ( z )  by studying the integrand in (3.14) at small values of q. 
The result is [5]  

valid for d > 2 with d = 2 n + ~  ( E  1 0)  for d even. Here L(0) = $ d ( O ; O )  is a lattice Green 
function. Its value for d = 3 is L(0) = & ( O ; O )  2 1.51638606 [17]. The corresponding 
long-time tail is 

with 
( d  + 2)(3d - b)  

r i d '  = d ( d  + 2 )  ( d  + 2)(2bL(O) - a)  * y  = ~ 

8 + 2(d - b)  4d(d - b)  ' 

(4.12) 

(4.13) 
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Next we briefly discuss the results for the bond problem. The VACF (4.5) and the 
diffusion coefficient D in (4.6) show some interesting features. By setting a = 0 one 
recovers the results for the unbiased RW of [5] .  They are in good agreement with 
existing computer simulations for bond percolation models [13, 141. For positive values 
of U the diffusion coefficient decreases. because the RW is biased to move out of regions 
of high impurity concentration. For a = 0, h = 1 one has the standard model of blind 
ants and Kirkpatrick’s effective medium value [ I  53 of diffusion coefficient is recovered, 
D = [l - dc/ (d  - 1 ) ] / ( 2 4 .  For a = 0, b < 0 the impurities are high quality conductors 
and the diffusion coefficient is enhanced. For a = b = 1 the model describes myopic 
ants in a percolation model. The diffusion coefficient is larger than that for blind ants 
in the same model. In the limit h --+ --x. the bonds become superconducting and 
D = [ l  + c(d + a ) ] / ( 2 d ) .  Finally for large negative a the diffusion coefficient quickly 
vanishes, because the particles get stuck at impurities. This can be seen from the 
stationary distribution (2.7). 

Equations (4.9) and (4.12) show the negative long-time tail typical for the Lorentz 
gas [18,19]. Hence, there is an increased probability that the RW returns to regions 
that were visited before-i.e. where a possible path has been realised-as compared 
with entering new regions. The VACF cp+(t) in (4 .7)  in hopping models is negative for 
all t > 0, whereas in the continuous Lorentz gas q(t)  goes negative after a finite time. 

The dominant tail of the VACF is independent of the bias a. This can be seen from 
(4.5) because a enters only in the combination ( h  + faz), and hence will only show up 
in the subleading tail. It adds a positive (negative)-contribution to the coefficient of 

-2-d l2  for a positive (negative) bias a, because for a > 0 particles get away faster from 
the scatterer and q ( t )  is less negative. 

The function cp+(t) = -ccpl(t) has been calculated by numerically inverting the 
Laplace transform in (4.5). This has been done for the two-dimensional case, along the 
lines in [5 ,6] .  In figure l(a) we present the short- and long-time behaviour, for myopic 
ants in a model with excluded bonds (a = b = 1 ) .  In figure I ( b )  we show the same 
for myopic ants in a model with impurity parameters (a = b = 4). In figure 2(a) the 
same quantity is plotted for blind ants in a model with excluded bbnds (a = 0,b = -1). 
These results are to be compared with figure l(a), where ants are myopic rather than 
blind. In figure 2 ( b )  we consider blind ants in a medium where the conductivity of 
impurity bonds is half that of host lattice bonds (a = 0, b = i) to be compared with 
figure I ( b ) .  Figure 2(c)  shows q I  ( t )  for blind ants in a medium with superconducting 
impurities (a = 0, h = -x). 

5. Master equation site problem 

In this section we consider systems where disorder is present at the sites of a d -  
dimensional hypercubic lattice. We study a master equation which generalises myopic 
and blind ants in a system with excluded sites to a system with impurity sites. The 
master equation has the form 

Here p denotes any nearest-neighbour lattice vector and 

W ,  = 1 - bc, (5.2) 
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0 0 5  1 0  1 5  2 0  2 5  3 0  3 5  4 0  
Collision times T 

1 5 -  L-- '.---, i -L i 

0 0 5  1 0  1 5  2 5  2 5  3 0  3 5  4 0  
Collision times T 

Figure 2. VACF for blind ants. (a )  The model with excluded bonds and a = 0, h = 1. (b )  
The model with impurity bonds of low conductivity and a = 0, h = 0.5. (c) The model 
with superconducting impurity bonds and a = 0, h = --r. In each case the broken curve 
represents the short-time expansion to order r 3  and the insets display the situation for large 
time. the broken curve being given by equation (4.9). 

where c,, = 0 for host sites and c,, = 1 for impurity sites. The parameter b models 
the strength of impurities: for b = 1, impurity sites are excluded (site percolation 
model), for 0 < b < 1 they are lower quality conductors than the host sites; whereas 
for --r, < b < 0 they are higher quality conductors. Note that the rate v n  depends 
only on the end point of the jump and not on the starting point. In (5.1) the rates 
w,, are modified by local factors x,~, which depend on the number of impurities on 
nearest-neighbour sites: 

(5.3) 

with -x < a I b I 1 for b > 0 and b I a 2 1 for b < 0. For a > 0 rates are enhanced, 
whereas they are suppressed for a < 0. The unbiased case a = 0 is termed 'blind ants' 
and the biased case a = b 'myopic ants', for which the total rate for leaving a given 
site is uniform throughout the whole system, despite the presence of disorder, (see the 
discussion below ( 2 . 5 ) ) .  The matrix L for the site problem in (5.1) is defined as 

1 
L = c ( S i '  - 1) Y S  P 

P 

(5.4a) 
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or explicitly 

(5 .4b )  

where the translation matrix ( S p ) n m  = 6,n.n+p. The matrices X,Y and C are diagonal 
with elements x,, W ,  and e, respectively. The stationary distribution can again be found 
explicitly 

In close analogy with section 2 we determine the response function for fluctuations in 
the stationary state (5.5). The equivalent of (2.1 1 )  is 

We now perform a density expansion in order to calculate the response function (5.6) 
to linear order in e, and introduce the fluctuation matrices 

Y = 1 - 6 Y  X = l - 6 X  
L = L O - V  w = v + z d X  
z~ + L = 2 + LO - W .  

(5.7) 

With the help of (2 .13)  they can be presented in the Fourier representation where 
L:,# = w(q)6,,, with o(q) as in (2 .15)  and 

a 
4q 2d 

Yqq, = C,,,b 6X,,, = C ,-  xexp(- iqp + iqp') 

Here q p  = C , y z p z ,  and similarly for ( q n ) .  
transformed by introducing the matrices A and B through 

The response function (5.6) will be 

where g = g ( q , z )  = l / ( z  + o ( q ) )  is the propagator of the pure lattice. In terms of the 
fluctuations, they are 
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where the term d X d Y  is of order c2 on account of (5.2) and (5.3) and will be dropped 
from now on. The response function (5.61, combined with (5.9), then yields 

F ( q , z )  = g + g 2 [ ( B ) , ,  + r ( q ? z ) l / ( l  -ac)(l  - b c )  (5.1 1) 

with 

We represent matrix elements of A,  B and W as inner products of 2d-vectors. From 
(5.10) and (5.8) it follows that 

By,, = c,,, r1;(4)&,(4’) = C,,JI’(q) ’ 4 q ’ )  wqy, = Cq, , e t (q )  ’ 4 q ’ )  (5.13) 

with the 2d-vectors: 

i’ 

b a 
q,,(q) = -(erYp - 1) - --w(q)eIqp 

2d 2d 
b az 

@,(q) = -(ely/’ - 1) + -elqp. 
2d 2d 

(5.14) 

The label p refers to the 2d N N  vectors e , ,  e,, . . . , ed, - e , ,  e2,.  . . , -ed respectively. Finally 
neglecting d X d Y  in the expression (5.10) yields 

A,,, - Cl,,, btW ’ q(4‘) - b(z  + 4 q ) ) I  (5.15) 

where we have used the relation 

V,,, = V,:, + b(o(q’ )  - o(q))C,,, .  (5.16) 

To proceed, we expand (5.10) in powers of W and collect all terms of order c. The 
analogue of (3.6) and (3.7) is 

x f%,-,) . dq, )g(4 , )&t(4 , )  . q(4) .  (5.17) 

Here we have also used the fact that the term b/g(q’ )  in (5.15) does not contribute, 
because 1, Ep(q) = N6,,,o = 0. Next i t  is convenient to introduce 2d x 2d matrices with 
elements 

n n 

The geometrical sum over I can be performed with the result 

H . q ( q )  + C‘.(C’). 
1 

1 - G  
r(4,~) = cqt(q) . - 

(5.18) 

(5.19) 
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6. VACF and the diffusion site problem 

On account of (4.4) the VACF is determined by the coefficient of q' in the Taylor 
expansion of F ( q , z )  in (5.11) and (5.19). Inserting the small-q expansion, q,(q) = 

(ib/2d) E, q 2 p ,  + e($) ,  in (5.19) yields the VACF for the site problem 

cb' 1 
1 +c(a  - b)  - - c p y (  - 

2d 2d Of' 1 - G H ) p p , p ' ]  ' 

In deriving this result we have used the fact that the sum is a second-rank tensor with 
cubic symmetry, and is therefore proportional to ~ 5 , ~ .  Also because of cubic symmetry 
the 2d x 2d matrices K,,,, = {Ifo,,,, GPPI), where p refers to the nearest-neighbour vectors 
p = ( e , ,  e 2 , .  . . . ed ,  - e ,  - e ,  ' ' ,  - e d ) ,  have only three independent elements: 

K, ,  = K,, K,,,,, = K,, K,, = K , ,  (j # i,d + i )  

where x,x and y refer respectively to e , , - - e ,  and e*. One easily verifies that the 2d- 
vector p\  with components ( p \ ) ,  = 6 , ,  - 6(,+,,, is an eigenvector of the cubic symmetric 
matrix K p f ,  

This eigenvalue k ,  is in fact d-fold degenerate because all p 2  (2 = 1,2;..,d) are 
eigenvectors with the same eigenvalue. So the matrix ((1 - G)-'H),,> in (6.1) can be 
replaced by h ,  / (  1 -g,)d,,, where h ,  and g,  are the eigenvalues of H and G corresponding 
to the eigenvector p\ .  The relation E, p t  = 2 is also needed. The explicit form of the 
eigenvalues follows from (5.18) and (6.2) 

with 

The final result for the VACF in the site model becomes 

2cb'l ( z )  
1 - ( h  + a z ) I ( z )  (6.5) 

and the diffusion coefficient D = O(0). The function I ( z )  is known analytically for 
d = 2 [8] 

(6.6) 

where E(m)  is the complete elliptic function of the second kind [16], with I (0)  = 
1 - 2 / n .  In the three-dimensional case we only know the value at z = 0, namely 
I ( 0 )  = ;{&(O;O) - B3(2e,  ; O ) )  z 0.207 1712 [7,17]. Expression (6.6) has the same 
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, ii 1 . 1 , " 1 . 1 ,  ' " " d  

0 0 5  1 0  1 5  2 0  2 5  3 0  3 5  4.0 0 0 5  1 0  1 5  2 0  2 5  3 0  3 5  4 0  
Collision times T Coll ision t imes T 

Figure 3. \ K F  for mjopic ants ( a )  The model with excluded sites and a = h = 1 ( b )  The 
model with impurities of low conductibity and  a = h = 0 5 In both cases the broken curve 
represents the short-time expansion IO order t 3  and  the insets display the situation for large 
time, the broken curve being given by equation (6 8 )  

structure as in the random bond model. I t  reduces to the VACF for the unbiased walker 
by setting a = 0 [8-111, and more particularly for b = 1 to the site percolation model 
PI. . .  

The long-time tail of the VACF follows from the small-z behaviour of (6.6) and is 
given by [IO] 

l + i z ) l n ( z / 8 ) + . . .  . (6.7) 

Inserting this in (6.5) and determining leading and subleading small-z singularities, one 
obtains, with the help of Tauberian theorems: 

B ,  = 4 b / [ ~ 1 ( l  - bI(O))] Bz = 21(0)(3 - bI(0))/[1 - bI(O)]. (6.8) 

Along the same lines as in (4.9) one can make a small-z expansion of I ( z )  for general 
d > 2, and derive the analogue of (4.1 1) .  Here we only quote the leading terms, i.e. 

I ( z )  2. I (0)  + ( g 2 r ( - ; p  + 

yielding for the dominant tail of the VACF 

(6.9) 

(6.10) 

As can be seen from (6.8) and (6.9), the coefficient of the leading long-time tail is 
independent of the bias a, that models the simultaneous interactions of the RW with 
all NN impurities. The explicit form of the VACF to c"(c2) included is: 

4(t) = D,6+(t) + d J + ( t )  + c'(c') 



5246 M H Ernst and T h  ,21 Nieubcenhuizen 

with DE = (1  - bc)/(4 + 4ac). The function $+(t) = -c$ , ( t )  can be obtained by 
numerically inverting the Laplace transform of (6.5). I t  is presented in figure 3(a)  for 
the case of myopic ants in the site percolation model (excluded sites, a = b = l) ,  and 
in figure 3(b) for myopic ants in a system with site impurities. The conductivity of the 
impurity sites is only half of the host sites ( a  = b = 4). For comparison figure 3(c)  
shows the VACF for blind ants ( a  = 0, h = 1 )  in the standard site percolation model, 
and figure 3 ( d )  for blind ants (a  = 0, b = f )  and low quality impurity conduction. 

Collision times T 

1 . 1  I ,I 

0 0 5  1 0  1 5  2 0  2 5  3 0  3 5  4 0  
Collision times T 

Figure 4. VACF for blind ants. ( a )  The model with excluded sites and a = 0, b = 1. (b)  The 
model oith impurities of low conductivity and a = 0, b = 0.5. In  both cases the broken 
curve represents the short-time expansion to order t3  and the insets display the situation 
for large time, the broken curve being given by equation (6.8). 

7. Summary 

In the present paper we consider diffusion in a medium with a small amount of 
impurity bonds or sites. The impurity jump rates differ from the host value by an 
amount proportional to the parameter b. For 0 < b < I the conductivity of impurities 
is lower than that of the host and for b = 1 they are inaccessible (missing bonds or 
missing sites); for --3= < b < 0, on the other hand, impurities conduct better than the 
host. Our model also contains a bias parameter a (0 I a I b for b > 0 or b I a I 1 
for b < 0), which models the effect of multi-impurity interactions of the RW. For a = 0 
the RW tries to jump with equal likelihood to impurity states and to host sites (‘blind 
ant’). For a # 0 there is either an enhanced or a diminished rate for hopping to better 
conducting regions, see section 2.  The special case a = b = 1,  where jumps are fully 
biased and impurities are non-conducting, is known in the literature as the problem 
of myopic ants. The model considered here allows for a more general description of 
the dynamical properties of, e.g., flow in porous media, oil in sands, gas in rocks or 
conductivity in disordered media. 

The bias parameter a mainly affects the short- and intermediawtime behaviour 
of the VACF. At low densities i t  has minor influence on the longtime tail because it 
only enters the subleading terms. The value of the diffusion coefficient is shifted by an 
amount proportional to the parameter a and the concentration c. It can be verified 
that the bias parameter a does enter the leading long-time tail of higher correlation 
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functions. Let us consider, for instance, the long-time tail of the modified Burnett 
function Ayy( t ) ,  which is a four-point velocity correlation function defined in [6]. This 
quantity can be calculated from the q4-terms of the response function. In the case of 
bond disorder it behaves as 

which obviously vanishes if and only if a = 0. Then the behaviour is proportional to 
[-I -d ' 2 [6,20]. In the system with site disorder the tail of Axs is of order tPdl2 both for 
a # 0 and for a = 0. See [ l l ,  201 for the two-dimensional situation with a = 0. 

In the random bond problem we encountered 2 x 2 matrices, since each bond 
connects two sites. In the random site problem there appear 2d x 2d matrices, because 
to each random site 2d bonds are connected. 

In the study of systems with quenched bond or site disorder, it turns out that 
several ad hoc approximations are accurate, and others are rather poor. For instance, 
the effective medium theory gives a very good description of the static conductivity [15], 
but a poor description of the low-frequency behaviour or, equivalently, of the long-time 
tails in the velocity autocorrelation function (VACF) at finite impurity concentration [21]. 
In view of these observations i t  would be of interest to treat our models by a method 
in the spirit of Watson and Leath [22] or by a generalised effective medium approach, 
in the spirit of the one proposed by Haus and Kehr [23]. This could give predictions 
valid in a rather large regime of concentrations. Also a calculation of c2 terms would 
be desirable for the same reason. One can also apply a self-consistent method based 
on Enskog renormalisation methods developed by Cichocki and Felderhof' [24]. 

For many lattice models with simple bond or site disorder computer simulations 
have been performed. The statistical accuracy of the existing methods [13,14] seems 
in general to be sufficient to make a quantitative comparison between theory and 
simulations for the diffusion coefficient and the long-time tail in the VAW, at least to 
lowest order, O(c) ,  in the impurity concentration. However, comparison with O(c2) has 
only become feasible through a new algorithm of Frenkel that increases the statistical 
accuracy by a factor lo3 and enables one to extend the calculation of the VACF to 
500-1000 time steps. Frenkel's simulations seem to indicate that the long-time tails 
in the VACF to O(c') in bond problems are in complete agreement with theoretical 
predictions but there seems disagreement in O(c2)-terms in lattice models with site 
disorder [25]. A possible explanation is that the true asymptotic regime has not been 
reached for 500-1000 time steps. 

As our biased random walks are, to some extent, hybrids of bond and site disordered 
systems, i t  would be very interesting to perform computer simulations to test the present 
theory and its extensions to higher densities, as well as Watson-Leath and effective 
medium type theories. 

Acknowledgments 

The authors thank Peter van Velthoven for performing the numerical work on the 
VACF and for preparing the figures presented in this paper. 

References 

[ l ]  Stauffer D 1985 Introduction to Percolation Theory (London: Taylor and Francis) 



5248 M H Ernst and Th M Nieuwenhuizen 

Havlin S and Ben-Avraham D 1987 Adr. Phys. 36 695 
Pandey R B, Stauffer D, Margolina A and Zabolitsky J G 1986 J. Stat.  Phys. 34 427 
Ernst M H, van Velthoven P F J and Nieuwenhuizen Th M 1987 J .  Phys. A :  Math. Gen. 20 949 
Ernst M H and van Velthoven P F J 1986 J .  Stat.  Phys. 45 1001 
Ernst M H 1987 J .  Stat. Phys. 48 645 
van Velzen G A and Ernst M H 1987 J .  Stat. Phys. 48 677 
Nieuwenhuizen Th M, van Velthoven P F J and Ernst M H 1986 Phys. Rer. Lett .  57 24577 
Nieuwenhuizen Th M, van Velthoven P F J and Ernst M H 1987 J .  Phys. A :  Math.  Gen. 20 4001 
Ernst M H, Nieuwenhuizen Th M and van Velthoven P F J 1987 J .  Phys. A :  Math. Gen. 20 5335 
Nieuwenhuizen Th M 1989 Physica 157A 1101 
Haus J W and Kehr K W 1987 Phys. Rep. 150 262 
Frenkel D 1987 Phys. Lett. 121A 385 
Breij J J. Gomez Ordonez J and Santos A 1988 Phys. Lett .  127A 5 
Kirkpatrick S 1973 Rev. Mod.  Phys. 45 574 
Abramowitz M and Stegun I A 1970 Handbook qfMathematical Functions (New York: Dover) 
Montet G L 1970 Phys. Rer .  B7 650 
Ernst M H and Weijland A 1971 Phys. R e t .  Lett .  34A 39 
van Beijeren H 1982 Ret.. Mod.  Phys. 54 195 
Machta J,  Ernst M H, van Beijeren H and Dorfman J R 1984 J .  Stat.  Phys. 34 477 
van Velzen G A, Ernst M H and Dufty J W 1988 Physica 154A 34 
Watson B P and Leath P J 1974 Phys. Rec. B9 4893 
Haus J W and Kehr K W 1987 Phys. Rer .  Lett .  36 5639 
Cichocki B and Felderhof B U 1988 J .  Stat. Phys. 51 57 
Frenkel D 1990 Fundamental Problems in Statistical Mechanics voi VII,  ed H van Beijeren (Amsterdam: 

North-Holland) 


